抓住问题本质 培养科学思维
——以“等效替代法测电阻(功率)”问题为例

蒋 敏 (南京市栖霞区教师发展中心 江苏 210028)
许 志 (南京市教研室 江苏 210001)

摘要 本文以近 10 年南京市中考“等效替代法测电阻(功率)”问题为蓝本，从培养学生科学思维角度出发，在研究“等效替代法测电阻(功率)”考题基础上，我们发现可以从不同角度体现“等效替代”的思想，如“电压等效”“电流等效”“电阻等效”“功率等效”。通过四个典型考例，深入分析了每一种“等效角度”的本质，并阐述了考题是如何考察学生的科学思维的。最后在研究考试考例上，从一线教师的视角提出了几点教学启示，希望能给广大初中物理教师提供参考。

关键词 问题本质 科学思维

1 引言

2022 年版初中物理课程标准中指出：物理课程要培养的核心素养，主要包括物理观念、科学思维、科学探究、科学态度与责任。其中科学思维是从物理科学视角对客观事物的本质属性、内在规律及相互关系的认识方式，主要包括：模型建构、科学推理、科学论证、质疑创新。南京市中考物理中一直重视对科学思维的考查，尤其是对“等效替代法测电阻(功率)”问题的考查，因此我们研究近 10 年南京市中考“等效替代法测电阻(功率)”问题很有价值。

“等效替代法测电阻(功率)”这类考题对学生的能力要求很高，要求学生能够理解替代法、抓住替代本质，灵活运用欧姆定律来解决实际问题。中考作为初中教学的指挥棒，基于南京市中考的考情，很多老师开始研究“等效替代法测电阻(功率)”的问题，总结出解决这类问题的一些方法并要求学生记忆。然而由于老师们在研究这类考题时，对“等效替代法”的本质理解并不全面，视角又偏窄，容易出现“等效替代法”的本质理解不全面，视角又偏窄，容易出现逻辑的错误。

表 1 南京市中考“等效替代法测电阻(功率)”考情统计

<table>
<thead>
<tr>
<th>年份</th>
<th>题型及题号</th>
<th>题</th>
<th>考查内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>解答题第 32</td>
<td>7</td>
<td>等效替代法测电阻、功率方法</td>
</tr>
<tr>
<td>2015</td>
<td>解答题第 26</td>
<td>6</td>
<td>电路的判断、电流表测电阻功率、等效替代法测电阻功率</td>
</tr>
</tbody>
</table>
2.2 “等效替代法测电阻(功率)’的分类与典型案例分享

从近10年南京市中考'等效替代法测电阻(功率)’问题考查情况来看,这种特殊测量电阻(功率)’的方法主要从四个不同角度体现了“等效替代”的思想,即“电压等效”“电流等效”“电阻等效”“动态等效”。为此,笔者选择了其中四道具有代表性的试题(两道测功率,两道测电阻)进行深入剖析,具体说明的是如何实现对学生科学思维的考查的,注意范围和重点。每一道题即保留了对“等效替代法”的考查部分。

2.2.1 抓住“电压等效”,考查“模型建构”

例1 (2016年)有一个电阻器阻值未知的电阻R1,R2(电阻R1约为10欧,R2约500欧)和一个电位器。要求测出未知电阻的阻值和电位器的额定功率。

小华从滑动变阻器、电压表(0~3V)、电流表(0~0.6A)、电源(电压约3V)和电阻箱(符号——，规格“0~9999 5A”)、若干开关及导线中,选择器材,完成图3所示的电路,测出了R1的阻值。请将所选元件符号填入虚线框内。

2.2.2 抓住“电流等效”,考查“科学推理”

例2 (2020年)(除开1、4问)有两个阻值未知的定值电阻R1、R2(R1约6欧,R2约500欧)和一个电位器。要求测出未知电阻的阻值和电位器的额定功率。

试题点评:本题立足于学生熟悉的伏安法测电压值电阻的实验情境,该题是本题的精华,考查了学生的科学推理能力,难度很大。学生面临的困难有两个:(1)选择哪些器材时,学生必须运用欧姆定律计算出电路中的最大电流,即:U/2个定值电阻,故电路中最大电流约为0.006A。于是电路表无法选用,只能选用电压表,然后还需要开关和电阻箱R2。

(D) 图1方案能,图2方案不能

(D) 图1方案能,图2方案能

试题点评:本题立足于学生熟悉的伏安法测电压值电阻的实验情境,该题是本题的精华,考查了学生的科学推理能力,难度很大。学生面临的困难有两个:①选择哪些器材时,学生必须运用欧姆定律计算出电路中的最大电流,即:U/2个定值电阻,故电路中最大电流约为0.006A。于是电路表无法选用,只能选用电压表,然后还需要开关和电阻箱R2。
和通过R_2的电流，因此电压表与R_2并联，但电路中没有电流表怎么办？可以用电阻箱(需接入的几百欧电阻)R 充当“电流表(灵敏电流计)”，即用电压和 R 的阻值算出电流，因此将电阻箱 R与 R_2串联(电路设计见图 4 所示)。操作方法：闭合 S1 和 S2，调节滑片 P，读出电压表示数为 U_1；断开 S1，闭合 S2，读出电压表示数为 U_1；则 R_2 两端电压的电压为 U_1，通过 R_2 的电流为 $(U_1-U_2)/R$，用电表测量电阻原理就可以算出 R_2 的阻值。这种方法没有电流表，通过计算得出电流表的方法，我们称之为“电流等效”。这类试验，只要抓住“电流等效”，就等于抓住了问题的本质，很好地考查了学生的科学推理能力。

2.2.3 抓住“电阻等效”狄修正证

例 3 (2017 年) (删去第 1～3 号) 在“测量小灯泡功率”实验中，小灯泡的额定电压 $U_m=2.5$ V。

小华设计了如图 5 所示的电路完成了该实验。请完成下列表格（电源电压不变，R_1 和 R_2 为滑动变阻器，R_2 的电阻为 R_2）。

1. 闭合 S1 和 S2，调节 R_2，使电压表的示数为 2.5 V；断开 S1，闭合 S2，调节 ______，使电压表的示数仍为 2.5 V。

2. 接着将 R_2 的滑片 P 调至最左端，记下电压表的示数为 U_1；将 ______ 的滑片 P 调至最右端，记下电压表的示数为 U_2。

3. 小灯泡额定功率的表达式 $P_m=________$（用 U_m、R_1、U_1、U_2 表示）。

试题点评：本题以测量小灯泡的电阻为背景，本题思维含量与，考查了学生的科学理论能力，对学生要求很高。第一步中前后两次电压表示数都调到 2.5 V，这说明什么？这是滑动变阻器 R_1 的接入电阻和小电珠正常发光的电阻相等的证据，为什么呢？因为变阻器 R_1 的滑片 P 位置不动，分压电压不变，因此前后两次滑动变阻器 R_1 上分得电压相等，电路中前后两次电流就相同，根据欧姆定律可得：$R_2 = R_1$，第二步提供的条件是让我们求出 R_2 的接入电阻，最后用 $P_m = U_m^2/R_2$ 即可求出小电珠的额定功率。可见本题中 R_2 替代了正常发光的小电珠，我们把这个称之为“电阻等效”。“电阻等效”类题目要求学生善于寻找“电阻等效”的“证据”，如：前后两次电压相等或电流相等，本同很好地考查了学生的科学论证能力。

2.2.4 抓住“动态等效”，考查“质疑创新”

例 4 (2022 年) (删去第 1 号) 现有一只阻值未知的定值电阻 R_3，利用图 6 所示电路，也能测出 R_3 的阻值，其中 R 为定值电阻，$R’$ 为电阻箱。请在空白处填上合适内容。

1. 闭合开关前，将滑动变阻器滑片滑到 b 端，电阻箱调为某一阻值 R_1；

2. 闭合开关，调节滑动变阻器，使电压表和电流表示数为合适的值；

3. 断开开关，再将电压表与待测电阻 C 端间的导线改接到 D 端（图 6 中虚线所示），闭合开关，反复调节 ______，使两表的指示与②中相，记录此时电阻箱的阻值 R_2，断开开关。

4. 待测电阻的阻值 $R_3=________$。

试题点评：本题的题目是“伏安法”测量电阻实验。该题是“伏安法”测量电阻的一个拓展性实验，创新味道很浓，主要体现在电压表的连接线发生了变化，这与以往的考查完全不同，本同能考查学生的质疑创新意识。本题学生容易产生疑惑的是，第三步中反复调节是哪一？是电阻箱 $R’$ 吗？能调节滑动变阻器吗？如果按照例 3，前后两次电压表示数相同，那么滑片位置就不能动，是不是这样呢？深入分析，我们发现，题目中有三个不等量：电阻表示数、电流表示数、电压表示数。根据欧姆定律我们可以证明：若前后两次电压表示数相同，则 $R_1 + R = R_2 + R_3$，可得 $R_3 = R_1 - R_2$，还能证明：电路总电阻不变，由于电阻箱 $R’$ 减少了 $(R_1 - R_2)$，因此滑动变阻器也需要调节，应将接入电阻增加 $(R_1 - R_2)$。观察，要能做对这道题，学生必须突破已有的思维定势，要有质疑创新意识。本题中电压表的接线柱发生了变化，因此与电压表并联的电阻随之改变，但不管怎么变化，与电压表并联的电阻值是相等的，我们把这个称之为“动态等效”。“动态等效”类题目能有效考查学生的质疑创新意识。

3. 实验验证

3.1 整体等效电路提升分析能力

从近 10 年南京中考试题来看，对于“等效
替代法测电阻（功率）”问题，从四种角度来体现“等效替代”的思想：即，电压等效、电流等效、电阻等效、动态等效。我们老师首先要指导学生系统实验中究竟采用了哪一种“等效”。具体来说，如例 1 和例 2 中，分别缺少一个电压表和电流表，这时候通常用一个定值电阻来充当缺少的电表。例 1 中，知道了通过定值电阻的电流定值电阻就可以充当电压表，用电流，电阻算出电压，体现了“电压等效”；例 2 中，知道了定值电阻两端的电压定值电表也可以充当电流表，用电压和电阻算出电流，体现了“电流等效”。不管是“电压等效”还是“电流等效”，实验设计中我们始终依据的是“伏安法”测量电阻（功率）的基本原理。而例 3 或例 4，题目中只有一个电表或两个电表有十电压表或电流表的示数不是用来计算的，而是作为前后两次电阻相等的证据，这类问题有一个特征就是前后两次电压值或电流值相同（或电压，电流值都相同），例 3 是“电压等效”，例 4 是“动态等效”。因此实验中利用四种等效的角度，有助于学生迅速梳理出解题的路径和方法，提升解题能力。

3.2 抓住替代本质，培养科学思维

“等效替代法测电阻（功率）”问题考查的是等效替代思想，但题目情境的设置可以千变万化。如前面四个例子所示。这么繁琐，我们该怎么去做呢？是不是把南京电或者其他市出现过的这些“等效替代法测电阻（功率）”的实验题都和学生讲一讲，让学生把操作步骤记住呢？显然不行，这样容易出现新的问题。如针对例 3 体现出的“电压等效”，老师们喜欢这样教：①这个实验中我们应该先接入什么元件？后接入什么元件？为什么？（生：先接入小灯泡，后接入滑动变阻器 R。因为小灯泡相当于大电流，滑动变阻器 R 相当于石头）；②前后两次实验中要保证什么示数相同？（生：保证电压表的示数相同）；③接入滑动变阻器 R，后，是调节滑动变阻器 R 的滑片，还是调节滑动变阻器 R 的滑片？为什么？（生：调节 R 的滑片，移动 R 的滑片相当于换了一艘船。老师如果按照这个固定模式去教而不加以拓展会怎么样呢？容易形成思维定势，当学生遇到例 4 第三问时，学生就傻眼了，滑动变阻器到底要不要调节呢？可见，老师们在教学中，千万不能让学生死记硬背步骤，要重视培养学生的科学思维。在讨论“等效替代”中还可以一同问：能不能先上石头，后上大象？通过讨论要让学生坚信，不管是“电阻等效”还是“动态等效”其本质都是前后两次电阻相同，抓住这个不变量，我们就能以不变应万变，培养学生科学的思维。

3.3 重视操作体验，渗透学科素养

“等效替代法”是一种实验操作方法，既然是一种操作方法就离不开动手体验，在实验教学中如果没有体验这个环节，实验的价值就体现不出来，学生的兴趣也无法激发，学科素养，尤其是动手操作技能会无从谈起。在讨论问题的基础上，学生通过动手操作可以进一步体会到“等效替代法测电阻（功率）”的思维魅力，同时又有可能发现新的问题。如例 2 中，学生在实验过程中按照图 4 的方法进行实验时，有的会成功，有的则不能成功，学生通过讨论会发现，在大电阻的测量中，用电阻箱 R 替代电流表，电阻箱的阻值必须与待测电阻 R 相当，如果 R 太小，于实验就无从谈起。同样在例 4 中，学生在实验过程中，若选择的实验器材不合适，实验也有可能不成功，如：若 R 大于滑动变阻器的最大电阻，在调节电阻箱 R′和滑动变阻器过程中，无法做到前面两次两表示数相同，无法完成实验。因此实验设计并不在于实验操作，实验设计是纸上谈兵，只有通过实验操作，学生才能发现问题而，解决过程中，使学生的实验技能和学科素养能得到进一步的提升。

4 结 语

总体而言，近 10 年南京市中考中，有关“等效替代法测电阻（功率）”问题的考法，考查的角度较为全面，难度的把握较为准确，尤其是近来电学中“等效替代法测电阻（功率）”的试题情境新颖、视角独特，有很大的区分度。研究这些试题，有助于我们一线教师理解“等效替代法测电阻（功率）”的本质，引导教师在教学中要注重守成变，要灵活多变，要从培养学生科学思维的角度去教。

参考文献